Deep Interactive Evolution

This project explores an approach that combines generative adversarial networks (GANs) with interactive evolutionary computation (IEC). While GANs can be trained to produce lifelike images, they are normally sampled randomly from the learned distribution, providing limited control over the resulting output. On the other hand, interactive evolution has shown promise in creating various artifacts such as images, music and 3D objects, but traditionally relies on a hand-designed evolvable representation of the target domain. The main insight found is that a GAN trained on a specific target domain can act as a compact and robust genotype-to-phenotype mapping (i.e. most produced phenotypes do resemble valid domain artifacts). Once such a GAN is trained, the latent vector given as input to the GAN’s generator network can be put under evolutionary control, allowing controllable and high-quality image generation.   Our work demonstrates the advantage of this novel approach through a user study in which participants were able to evolve images that strongly resemble specific target images.




by Philip Bontrager


No Upcoming Events