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Catch-Up is a two-player game in which the players’ scores remain close throughout the game,
making the eventual winner – if there is one – hard to predict. Because neither player can build
up an insurmountable lead, its play creates tension and drama, even between players of different
skill. We show how the game is played, demonstrate that its simple rules lead to complex game
dynamics, analyse some of its most important properties, and discuss possible extensions.

1 Introduction

I T is a challenge to design interesting two-
player games with simple rules that keep the

score close, even between players of different skill.
When the game score is close, players experience
tension and drama by not knowing too far in ad-
vance who will win. This drama has been dis-
cussed qualitatively [1, 2] and quantitatively [3].

To enhance tension, games often have catch-
up mechanisms, sometimes called rubber band-
ing [1]. Players who are behind can receive a
boost to help them recover, and players who are
ahead are prevented from maintaining or acceler-
ating their lead.

Economists describe the desire to minimise
inequality as inequity aversion, wherein people
prefer rewards to be allocated evenly [4]. Design-
ing games with inequity aversion can create a
more balanced competitive experience, allowing
experts and novices to enjoy playing together as
the score will remain close throughout the game.
A game is also often more enjoyable if one is not
losing by a large amount. However, too much
catching up can lead to games in which the win-
ner is not determined until the very end, making
early moves meaningless.

1.1 Catch-Up

We present Catch-Up, a minimal game [5] with
simple rules that can be learnt quickly, invented
by the authors with these ideas in mind.1 The
rules are as follows.

Catch-Up starts with a set of numbers S.

1. Two players, P1 and P2, begin with scores, s1
and s2, of zero. P1 starts by removing a number
from S, which is added to his or her score.

2. The players then take turns removing one
or more numbers from S, one by one, until
the acting player’s score equals or exceeds the
opponent’s current score.

3. When this is no longer possible, the acting
player receives any remaining numbers. The
player with the higher score wins; the game is
drawn if scores are tied.

Catch-Up provides meaningful choices, with
score balancing built into its rules. Players alter-
nate holding the lead, with the score difference
bounded by a relatively small number. Note that
the game is actually played with a multiset of num-
bers, i.e. some numbers may be repeated, but we
use the term ‘set’ here for simplicity.
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Figure 1. An example game of Catch-Up won by player P2.

1The demo game and code used in this paper are available at: http://game.engineering.nyu.edu/catch-up
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Players are therefore uncertain who will win
a game of Catch-Up until the end. The game is
surprisingly complex, given the simplicity of its
rules, with no trivial heuristics that enable players
to win every time.

We illustrate with several examples how
Catch-Up is played, discuss optimal strategies
and heuristics, analyse some important proper-
ties, and discuss possible extensions of the game.
Figure 1 shows a short game won by player P2,
by way of example.

1.2 Combinatorial Aspects

We study this combinatorial game using an ap-
proach similar to that used in Scientific American
articles by Martin Gardner [6] and Winning Ways
For Your Mathematical Plays [7], but we also pro-
vide context for game designers. In particular,
we show how the set – the numbers the players
start with – affects the game’s complexity and
play dynamics.

Catch-Up is a combinatorial perfect informa-
tion game, so even though the players have close
scores throughout the game, there exist optimal
strategies to win or tie. Thus, the scoring mech-
anism does not necessarily reflect who is more
likely to win the game: a player may be in a game-
theoretic winning position even though his or her
score is lower than the other player’s. Catch-Up
shows that creating scoring systems in which the
current score is a reliable and meaningful indi-
cator, in games with significant catch-up mecha-
nisms, is indeed a challenge.

Catch-up mechanisms exist in many games,
from board games using variable scoring (e.g.
Hare & Tortoise [8]) or time tracks (e.g.
Tokaido [9]) to video games with variable
powerups (e.g. Super Mario Kart [10]). The game
Catchup, by Nick Bentley,2 uses a catch-up rule
that permits the player who is behind to add

an extra piece each turn. Zhang-Qi3 is similar
(though we were not aware of it when designing
ours) but uses a specific 32-element set, places
markers on a uniquely shaped board, and de-
scribes the catch-up rule as one of two optional
rules.

2 Examples of Play

The rules of Catch-Up are presented in the shaded
box on the preceding page. We explore several
example games to show that the rules, although
minimal, define a game with interesting non-
trivial properties.

We use the notation Catch-Up(S) to describe
the game played with set S. For example, Catch-
Up({1, ..., N}) is played with S = {1, ..., N}, the
consecutive positive integers from 1 through N.
For clarity, P1 is referred to as she and P2 as he.

2.1 Catch-Up({1, ..., 4})
Figure 2 shows the full game tree for Catch-
Up({1, ..., 4}). Assuming optimal play by P1 (tri-
angle) and P2 (square), winning, drawing, and
losing positions, and moves for the acting player
are indicated. Numbers show the numbered
pieces selected on that move. Thicker lines in-
dicate optimal plays. Above each node, {B}:D
gives the remaining numbers B and the score dif-
ferential D.

One possible game might play out as follows,
which is shown in steps in Figure 1. The set starts
with S = {1, 2, 3, 4}. P1 initially removes 〈3〉, and
is ahead 3− 0. Play then switches to P2, who can
choose from {1, 2, 4} and removes 〈2〉. Since the
score is 3− 2 and P2 is still behind, P2 needs to re-
move another number. P2, choosing from {1, 4},
removes 〈4〉. Thus, on P2’s turn the entire move
was to remove 〈2, 4〉, and the score is now 3− 6.
Since P2 is ahead, play switches back to P1.
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Figure 2. The full game tree for Catch-Up({1,2,3,4}).

2https://nickbentleygames.wordpress.com/2012/04/29/my-best-game-i-suspect-ketchup/
3http://boardgamegeek.com/boardgame/72711/zhang-qi
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The set contains only {1}, which P1 removes.
The game ends with a final score of 4− 6, so P2
is the winner by 2. This game could also have
ended in a draw as follows: P1 selects 〈2〉, P2 se-
lects 〈1, 4〉, and P1 selects 〈3〉, tying the game at
5− 5 and illustrating how P2 can force a draw.

Because of Rule 2, players always start their
turns either tied or behind the other player. This
means the player’s task is at least to catch up to
the other player, but neither player can ‘snowball’
or jump far ahead. Conversely, this same rule
means that players will always end their turns
either tied or ahead of the other player.

In order to keep players from memorising
strong opening moves, we propose that players
play with a randomised set – with repeated or
missing numbers – such that there are too many
possible game trees for players to memorise.

2.2 Physical Implementation

If Catch-Up is played as an abstract mathematical
game, it requires detailed bookkeeping, which

some players may find difficult. We propose a
version played with physical pieces on a table,
as shown in Figure 1, illustrating the moves de-
scribed in Section 2.1. The pieces are designed to
fit next to each other, such that that the lengths
can be quickly determined to see whose turn it is.

We believe the physical version is more plea-
surable to play because the physical pieces sim-
plify the arithmetic calculations, making the game
more accessible [11]. If the shortest piece is 1 cen-
timetre long, a tie game of Catch-Up({1, ..., 12})
would end up being (1 + ... + 12)/2 = 39 cm long,
with the largest win margin at most 12 cm long.

2.3 Puzzle-Like Quality

Catch-Up has a puzzle-like quality [3], making it
challenging to find solutions that lead to a win or
draw. For example, Figure 3 shows two subtrees
of Catch-Up({1, ..., 7}).
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Figure 3. Two subtrees of Catch-Up({1, ..., 7}).
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In Figure 3a (top tree), P2 (represented by
squares) is in a winning position, but he must
proceed carefully. This position was reached by
P1 (represented by triangles) initially removing
〈3〉, P2 removing 〈5〉, and P1 removing 〈6〉, leav-
ing a set of {1, 2, 4, 7} and a score difference of
4. One move leads to a win, one move leads to a
draw, and all other moves lead to losses (random
play here would lead to a 7/8 chance of choos-
ing a sub-optimal move). P1’s optimal move is to
choose the largest sum possible, removing either
〈1, 2, 7〉 or 〈2, 1, 7〉. Each uses the same numbers
and reaches the same score; strategically equiva-
lent moves are indicated with ‘or’ in Figure 3.

This strategy of maximising one’s lead, how-
ever, does not always work. The subtree of Fig-
ure 3b (bottom tree) is reached by P1 initially re-
moving 〈2〉, P2 removing 〈5〉, and P1 removing
〈7〉, giving a score difference of 4. If P2 then max-
imises his score by choosing 〈3, 6〉, worth 9 points,
this leads to a forced draw. But if P2 chooses the
lower valued 〈1, 6〉, worth only 7 points, he forces
a win. Making this even more tricky, choosing
〈3, 4〉, also worth 7 points, leads to a forced loss
for P2.

In Section 3 we discuss various simple strate-
gies and heuristics that beginning players might
use to help navigate the game tree. This shows
the relative effectiveness of each heuristic.

2.4 Maximising Is Not Optimal

In the previous section, we showed that a strategy
of selecting the largest sum of numbers possible
is not always an optimal strategy, though it is
an obvious heuristic that a player might try. As
another example, in a game of N = 5, with a set
{1, 2, 3, 4, 5}, if P1 always selects the numbers that
gives her the largest lead, she will lose: P1 initially
removes 〈5〉, P2 can then remove 〈1, 3, 4〉, forcing
P1 to choose 〈2〉 and lose the game 7− 8.

This happens specifically because of the in-
equity aversion of Rule 2. If, for example, players
were required to select a fixed number of num-
bers on each turn; then a maximising-score strat-
egy would be dominant, making the game trivial.
By contrast, the rules of Catch-Up lead to a game
tree that makes optimal choices non-trivial: there
are no immediately obvious strategies to win ev-
ery game.

2.5 Endgame

On every turn, a player of Catch-Up comes from
behind or from a tied score. However, there are
many cases in which a player, who will lose if the
opponent plays optimally, can still come back to
win very late in the game if the opponent makes
a mistake on his or her last move. This implies

that both players must focus on winning up until
their very last moves.

In Figure 4, we show an example of a subtree
of Catch-Up({1, ..., 7}) wherein optimal play pro-
duces a loss for P1, but there is still a chance for
a win with the last moves in the game if P2 plays
non-optimally. To reach this position, assume P1
chooses 〈1〉, P2 chooses 〈2〉, P1 chooses 〈5〉, and
P2 chooses 〈6〉, so the score difference is 2 and
{3, 4, 7} remain in the set. Now, if P1 chooses 〈7〉,
she will lose when P2 is forced to choose 〈3, 4〉.
However, if P1 chooses 〈3〉 or 〈4〉 – putting her 1
or 2 ahead – then P2 must choose 〈7〉 to win.
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Figure 4. P2 can force a win in this subtree.

2.6 Drawn Games

Drawn games are sometimes possible in Catch-
Up if the sum of the numbers in S is even.
Whether optimal play leads to a draw, or a win
for P1, depends on S. Games that end in a draw
may be dissatisfying for some players because
there is no winner (although draws do not seem
to bother many Chess players, for example).

Whether Catch-Up permits draws is solely
determined by the set S. In the case of Catch-
Up({1, ..., N}), it depends on the value N. For
all n ≥ 0, games of the form N = 4n + 1 and
N = 4n + 2 always have a winner by at least one
point, because the sum of all the points 1, 2, ..., N
is odd; there is no way to split them evenly.
Conversely, games of the form N = 4n + 3 or
N = 4n + 4 can have games that end in a draw,
because the sum of all the numbers is even. We
provide a proof of this in Appendix 5.1, and we
calculate in Section 4.9 how often draws will oc-
cur as a function of N.

For games of the form Catch-Up({1, ..., N})
with N = 4n + 3 or N = 4n + 4, which can have
games that end in a draw, we have calculated up
to N = 20 that optimal play by both players leads
to a draw (see Section 3.1). However, optimal
play in any even-sum game of Catch-Up(S) for
any arbitrary S does not necessarily produce a
draw. Consider an even-sum game with repeated
numbers S = {2, 2, 2, 3, 3}, shown in Figure 5,
which sum to 12. Here P1 can force a win by
initially choosing 〈2〉. Drawn games are still pos-
sible for this set, but they are not the result of
optimal play.
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{2,2,2,3,3}:0

{2,2,3,3}:2

{2,3,3}:0

{3,3}:2

{3}:1

{}:2

{2,3}:3

{}:2                            {2}:0

{}:2

{2,2,3}:1

{2,3}:1

{3}:1

{}:2

{2}:2

{}:0

{2,2}:2

{2}:0

{}:2

{2,2,2,3}:3

{2,3}:1

{3}:1

{}:2

{2}:2

{}:0

{2,2}:2

{2}:0

{}:2

{2,2,2}:0

{2,2}:2

{2}:0

{}:2

2 3

2 3

2 3

3

3

2,3 3

2

2 3

2 3

3                       2

2

2

2,2 2,3
3

 2 3

3 2

2

2

2

2

2

Winning Position 
Drawing Position 

Losing Position 

P1 P2

Winning Move
Drawing Move
Losing Move

Optimal Winning Move
Forced Losing Move

Figure 5. An even-sum game in which P1 can force a win, but which can also end in a draw.

Furthermore, it is easy to see that some even-
sum games do not even permit a draw. Consider
Catch-Up({2, 4, 6, 8, 10}), which is even-sum, but
obviously no subsets of these numbers can pro-
duce a 15− 15 tie.

2.7 Importance of the First Move

One criticism of catch-up type mechanisms is that
the early moves in the game have no importance.
We show here that the first move P1 makes in
Catch-Up({1, ..., 7}) has an impact on the percent-
age of ways that P1 can win, lose, or draw. In
Table 1, each row shows the change from 50%–
50% in the percentage of ways that the game can
end in a win, lose, or draw, given that P1 makes
the indicated first move.

Move ∆ Win% ∆ Lose% ∆ Draw%
〈1〉 0.60% 0.60% -1.19%
〈2〉 -2.46% 3.65% -1.19%
〈3〉 6.43% -6.90% 0.48%
〈4〉 3.10% -1.90% -1.19%
〈5〉 0.32% -0.79% 0.48%
〈6〉 -4.13% 3.65% 0.48%
〈7〉 -3.85% 1.71% 2.14%

Table 1. Percentage change with P1 moving first.

By choosing 〈3〉, P1 increases the ways of win-
ning by 6.43% and reduces the ways of losing by
6.90%. Conversely, choosing 〈6〉 decreases the
ways of winning by 4.13% and increases the ways
of losing by 3.65%. Clearly, the first move has
an impact on the ability of non-optimal players
to achieve a win, loss, or draw; but this has no
bearing on optimal play.

3 Strategies

Catch-Up, for any finite set S, is a finite two-
person zero-sum game of perfect information, so
there exists a pair of optimal strategies such that
(i) P1 can guarantee a win, (ii) P2 can guarantee
a win, or (iii) the game is a draw. In order for
a perfect-information game to be non-trivial, the
optimal strategy should not be obvious to play.

In addition, different strategies should
present a heuristic tree [1], such that there are some
simple heuristics that new players can learn, and
better performing but more complicated heuris-
tics for more sophisticated players.

3.1 Optimal Play

We cannot yet prove whether Catch-
Up({1, ..., N}) is a win, loss, or draw for P1 for
any N; however, for a given set, we can efficiently
run a minimax algorithm with alpha-beta pruning
and transposition tables [12] to solve the game
value, assuming optimal play by both players.
We have calculated the game values for Catch-
Up({1, ..., N}) up to N=20. Results for optimal
play are shown in Table 2 in the optimal play
row, with -1 being a loss for P1, 1 being a win for
P1, and 0 being a tie game.

As described in Section 2.6, Catch-
Up({1, ..., N}) games of the form N = 4n + 3
or N = 4n + 4 permit draws. We have calculated
that these games, up to at least N = 20, are draws
for optimal play. We believe that this pattern
holds for all n, though we have not been able to
prove this and can only offer it as a conjecture.
Using Monte-Carlo tree search [13], we have ex-
plored values of N = 23, 24, 27, and 28 and did
not find any contradictions.

N 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
optimal play 0 0 1 1 0 0 -1 -1 0 0 1 -1 0 0 1 -1 0 0

Table 2. Optimal play values for Catch-Up({1, ..., N}) relative to P1: 1 is a win, -1 is a loss, and 0 is a draw.
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P2 Random P2 MaxScore P2 MinScore P2 UseMostNums
P1 Random 50.01% 41.66% 60.87% 46.53%
P1 MaxScore 63.04% 14.28% 29.78% 48.06%
P1 MinScore 37.56% 79.74% 0.00%* 37.79%
P1 UseMostNums 52.70% 49.73% 60.54% 50.87%

Table 3. Win percentages for P1 when playing different heuristics against P2 in Catch-Up({1, ..., 10}).

3.2 Human-Playable Heuristics

Although machines can efficiently search a game
tree for optimal moves, humans do not think in
the same way and, generally, do not find it enjoy-
able (or possible) to exhaustively explore every
move when playing a game.

In order for a strategy to work for human
players, we need effective heuristics that are ac-
cessible and can be easily used. And for a game
to have lasting depth, simple heuristics must be
generally less effective than more complex ones,
so there is a benefit for continued study and im-
provement.

We analysed several simple human-usable
heuristics for playing Catch-Up. For these heuris-
tics, if multiple moves could be chosen, one of
them is picked at random. We do not claim that
these are the only heuristics for players, or that
players should follow any of them. Instead, they
provide a starting point for strategies that new
players might try, which help us understand if
the game can be enjoyed by beginners.

1. Random: Players choose any move at ran-
dom.

2. MaxScore: Players maximise their scores
on every turn, extending their leads by as
much as possible.

3. MinScore: Players minimise their scores on
every turn, keeping their scores as close as
possible.

4. UseMostNums: Players use as many num-
bers as possible, reducing the numbers
available for the opponent.

For Catch-Up({1, ..., 10}), which is an odd-
sum game, optimal play by both players leads
to a loss for P1, but it is difficult for humans to
play optimally. Instead, we can test the various
simple heuristics and compare how they perform
against each other.

For example, Table 3 shows the probabilities
of P1 winning when playing each of her heuris-
tics against each of P2’s 100,000 times. The value
in each cell indicates the percentage of games in
which P1 wins; a value of 1 means that P1 always
wins, whereas a value of 0 means that P1 always
loses. Values > .5 in Table 3 are good for P1,

whereas values < .5 are good for P2. Players are
assumed to use the same heuristic throughout
the entire game, without switching or adapting
within a game to what the other player is doing.

The P1 Random vs P2 Random cell shows that
random play gives close to a 50% chance of win-
ning, which indicates completely unskilled play
will not favour one player over the other. Look-
ing at the first column, we see the effect of P1 us-
ing each heuristic against P2 Random, and that
P1 MaxScore is the best of the four heuristics,
improving P1’s win rate to approximately 63%,
whereas P1 MinScore is a bad heuristic, reducing
the win rate to around 37.6%. Similarly, if we
look at the first row, which shows the effect of P2
using each heuristic against P1 Random, we see
that P2 MaxScore is the best heuristic for P2.

However, if both players adopt the MaxScore
heuristic, this is bad for P1, reducing P1’s win
rate to around 14.3%. P1, playing against a P2
MaxScore heuristic, would do better to use the
P1 MinScore heuristic, which was previously a
bad choice. But this can lead to P2 in turn switch-
ing to the P2 MinScore heuristic, in which P2 now
wins every game. Likewise, P1 now does better
by switching back to the P1 Random heuristic.

Given these simple heuristics, we already see
an interesting pattern, in which there is not one
dominating heuristic. This is an indication that
Catch-Up does not have a trivial or obvious so-
lution for human players. We believe this rock-
paper-scissors balance, in which different heuris-
tics perform better in some cases but not others,
but no one heuristic dominates, is an important
characteristic of deep and interesting games.

These heuristics do not necessarily generalise
to other sets S. Just because a heuristic does well
in Catch-Up({1, ..., 10}) does not mean it does
well in Catch-Up({1, ..., 9}), another odd-sum
game. For example, P1 MinScore vs P2 MaxScore
wins 79.7% for P1 in the former game, but flips
to only a 34.1% win rate for P1 in the latter game.
Clearly, these heuristics offer only a glimpse into
optimal play of Catch-Up.

3.3 Climbing the Heuristics Tree

We can simulate a player adopting a new, better
heuristic by combining the previous four heuris-
tics. Instead of deciding between multiple moves
randomly, we can apply a second-level heuristic
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to choose between multiple moves. For example,
P1 using UseMostNums + MinScore would first
pick moves to use the most numbers, and if there
is more than one remaining move to choose from,
she chooses the move that sums to the smallest
number. As before, any final remaining options
are eliminated by selecting one at random.

If P2 adopts this UseMostNums + MinScore
combination heuristic, but P1 stays with the orig-
inal heuristics, P2 now wins every game against
two P1 heuristics, and wins a slight majority of
games otherwise, as shown in Table 4.

P2 UseMostNums + MinScore

P1 Random 45.88%
P1 MaxScore 0.00%
P1 MinScore 0.00%
P1 UseMostNums 45.55%

Table 4. P2 win rate using combination heuristic.

Note that the purpose of this section is not to
present the reader with the best heuristics, but
to show that Catch-Up provides a compelling
platform for developing effective heuristics for
human play.

4 Properties of Catch-Up

In analysing the properties that follow, we do not
always have analytical proofs for all S, or for all
values N for S = {1, ..., N}, so we offer conjec-
tures and computational analysis of games for
relatively small N. Some of these metrics have
been used to determine whether a game is well
designed, which have been shown to be effective
at generating new game designs [3].

4.1 Total Points Scored

Catch-Up ends only when all the numbers have
been incorporated in either P1’s score s1 or P2’s
score s2. For Catch-Up({1, ..., N}), the sum of the
players’ scores will be equal to the triangular num-
ber T(N) [14, Seq. A000217] :

s1 + s2 = T(N) =
N

∑
i=1

i =
N(N + 1)

2
(1)

4.2 The Lead is Always ≤ max(S)

A player can never be winning by more than
M = max(S), the largest number in S, which
includes the final move. Thus, a designer can
choose elements of S to force the game always to
be within a range of M points.

This is relatively easy to prove. Let Pi be the
acting player, and Pj be the opponent. A turn
must end when a Pi ties or exceeds Pj’s score, so
right before choosing the last number that ends a
turn, Pi must either be starting tied or be behind,
so si − sj ≤ 0. The largest number that can possi-
bly be chosen as the last selection on the turn is
M. Thus, at the end of the current turn, the score
difference can be no more than M = max(S).

4.3 Maximum Points Per Turn

We can analyse the maximum number of
points that can be earned on a turn of Catch-
Up({1, ..., N}). On P1’s first turn, she would
choose N, the largest number available. On P2’s
turn, he can first select numbers that sum to
N − 1 (if P2 were to exceed N − 1, then the turn
would immediately end) plus the largest remain-
ing number, N − 1. This can be done by selecting
〈1, N− 2, N− 1〉, which gives P2 a maximum sum
of 2N − 2 on a single turn. Note that P2 would
also have achieved this if P1 first chose 〈N − 1〉,
and P2 responded by choosing 〈N − 2, N〉, also
giving a total of 2N − 2.

4.4 Game-Tree Size

The game-tree size gives the total number of
unique play-throughs, iterating through all valid
moves of the game. This is equivalent to counting
the number of terminal nodes in the game tree.
For simplicity, we consider each permutation of
a player’s removal choices in a single turn to be a
distinct branch, although the order of removals
within a turn does not matter during play.

Large game trees are more difficult for play-
ers to utilise in play, as they do not permit mem-
orisation of the best moves; however, they also
make it computationally harder for analysis by
adversarial search. By increasing the size of the
set S, the game tree rapidly increases in size.

The game-tree size is exactly N!, which is the
number of ways the numbers in the set can be
picked, and then assigning turns after determin-
ing the order, the numbers are picked to make it
a valid game of Catch-Up. Table 5 enumerates all
possible games of Catch-Up({1, ..., N}) for up to
N = 18 and counts the number of terminal nodes,
verifying the game-tree size is indeed N!.

4.5 State-Space Size

State-space size is the number of possible states of
the game, reflecting the fact that many states can
be reached from multiple moves [15]. This pro-
cess converts the game tree into a directed acyclic
graph, because a game state represented in the
graph can have multiple parents.
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N game-tree state-space P1 optimal max branch min win tie loss
size (N!) size play value factor depth % % %

3 6 11 0 3 2 16.67% 66.67% 16.67%
4 24 33 0 6 2 33.33% 33.33% 33.33%
5 120 90 1 16 3 50.00% 0.00% 50.00%
6 720 236 1 36 3 50.00% 0.00% 50.00%
7 5040 591 0 78 3 38.57% 22.86% 38.57%
8 40320 1453 0 150 4 38.93% 22.14% 38.93%
9 362880 3484 -1 272 4 50.00% 0.00% 50.00%
10 3628800 8174 -1 474 4 50.00% 0.00% 50.00%
11 39916800 18799 0 886 5 41.90% 16.19% 41.90%
12 479001600 42587 0 1470 5 42.47% 15.06% 42.47%
13 6227020800 95126 1 2448 5 50.00% 0.00% 50.00%
14 87178291200 210064 -1 3894 6 50.00% 0.00% 50.00%
15 1.30767E+12 459225 0 6158 6 43.86% 12.28% 43.86%
16 2.09228E+13 995349 0 10284 6 44.23% 11.53% 44.23%
17 3.55687E+14 2141652 1 16048 6 50.00% 0.00% 50.00%
18 6.40237E+15 4579850 -1 24762 7 50.00% 0.00% 50.00%

Table 5. Measures for Catch-Up({1, ..., N}) for values of N = 3 to N = 18.

In Catch-Up, the necessary states to track are:
current player, current score and numbers re-
maining in the set.4 We do not have an analytical
bound for the state-space size, but empirical data
generated for small N, shown in Table 5, demon-
strates that it grows much more slowly than the
game-tree size. For large N, the state-space size
is much smaller because there are many ways to
reach the same game state using different moves.

For example, for any Catch-Up({1, ..., N})
for N ≥ 3, the following game traces all
reach an identical game state with tied score
3 − 3: (〈3〉, 〈1, 2〉); (〈3〉, 〈2, 1〉); (〈2〉, 〈3〉, 〈1〉);
(〈1〉, 〈3〉, 〈2〉). Thus, huge benefits occur from
caching results in a transposition table [12] when
exploring the game graph for optimal moves.

4.6 Game-Tree Depth

The depth of a game tree for Catch-Up(S) can be
no deeper than |S| turns. Thereby, the designer
or players can control the length of the game by
choosing the size of S.

This maximal depth occurs when each player
selects the smallest number in the set, with each
ending a turn with only one number removed.
This gives a total of N turns. Games can cer-
tainly end sooner, because on some turns a player
may select more than one number, decreasing the
number of turns for that path in the tree.

The minimum length of the game is also
determined by the size of the initial set. We
do not have an analytical lower bound for
Catch-Up({1, ..., N}), but we present calculated
minimum-depth values in Table 5.

4.7 Maximum Selections per Turn

For Catch-Up({1, ..., N}), we can calculate K, the
maximum number of numbers that can be se-
lected on a turn. This can help a designer un-
derstand how long a turn will take for players
to evaluate. We show in Appendix 5.2 that K is
O(
√

N) and has an exact analytical value of:

K = b
√

2N − 7/4 + 1/2c

4.8 Branching Factor

The maximum branching factor, which we call
Bmax, tells us how many possible moves there are
on a turn in the worst case. The higher the branch-
ing factor, the more complicated a game can be
for a player to explore. The maximum branching
factor for Catch-Up({1, ..., N}) is:

Bmax = O
(

N
√

2N+1
)

A derivation of this upper bound is provided
in Appendix 5.3.

In Table 5, we show the empirical maximum
branching factor, which is the maximum of the
number of first moves by P1 and the number of
replies (to first moves) by P2. This table clearly
shows that the maximum branching factor is ex-
ceedingly high for a game, making it difficult to
explore the entire early game tree for large N.

As Catch-Up proceeds, there are fewer num-
bers in S to choose from, so the branching factor
Bt for each turn t will decrease until the final
move, which forces the last player to select all re-
maining numbers. The average branching factor
Bavg will be less at each layer of the game tree.

4If this information is known, it does not matter how the removed numbers were chosen to get to this state.
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Turn 1 2 3 4 5 6 7 8 9 10 11 12
Bavg 12 366.67 35.42 15.52 7.80 4.32 2.72 1.94 1.52 1.27 1.11 1.00
Bmax 12 1470 738 738 560 560 258 108 24 6 2 1

Table 6. Average (Bavg) and maximum (Bmax) branching factors for Catch-Up({1, ..., 12}).

We do not have an analytical bound for Bavg,
but can calculate it empirically for small N, allow-
ing us to generate the entire tree.

In Table 6, we give the average and maximum
branching factors per level of the game tree for,
as an example, Catch-Up({1, ..., 12}). Level l of
the tree represents the possible game states and
moves available on turn l. To calculate the aver-
age branching factor, we expand the entire game
tree and then calculate how many moves there
are available on each level of the tree divided by
the number of unique states on that level. The
average and maximum branching factors peak on
Turn 2 (P2’s first turn) and then rapidly decrease
as the game progresses to the end.

4.9 Win/Loss/Draw Ratios

It is useful to understand if a game is balanced
by looking at a game’s win/loss/draw ratios. For
small N, we can analyse the entire game tree
to calculate the percentage of wins, losses, and
draws. The Win %, Tie %, and Loss % columns
in Table 5 show the results of exploring all pos-
sible games of Catch-Up({1, ..., N}) from N = 3
to N = 18. As explained in Section 2.6, tie games
are impossible in games where T(N) is odd, and
these tie percentages are indicated as 0.00%. As N
increases, the chance of a random game ending in
a draw decreases, which suggests that the games
are not too ‘drawish’. We also note the games
are balanced between P1 and P2, suggesting that
there is no inherent advantage in going first or
second if not playing optimally.

4.10 Solutions that Lead to a Draw

For Catch-Up({1, ..., N}), it is also possible to enu-
merate the moves which will lead to a draw by
finding the assignment of positive and negative
numbers using the following equation:

1± 2± ...± N = 0 (2)

Assigning positive numbers to P1 and negative
numbers to P2 gives us all possible solutions that
lead to a draw.

The number of unique assignments of plus
and minus for large N can be calculated using a
generating function [14, Seqs. A063865, A058377],
which was first discovered by Euler and has been

shown to have an asymptotic upper bound of√
6/π ∗ N−3/2 ∗ 2N .

One way to solve this is to find strict parti-
tions of T(N)/2. Strict partitions are sets of non-
repeating integers that add up to a given sum;
for example, a strict partition of 10 is {2, 3, 5} or
{1, 3, 6} but not {1, 1, 3, 5} or {2, 2, 2, 2, 2}. We can
use a strict partition to give the unique integers
that can sum to half the total score for the game,
which is the condition for a draw. One can gener-
ate partitions [16] and then remove the ones with
repeated integers, or generate them directly using
generating functions [14, Seq. A000009].

Every solution to Equation 2 can be reached
by having each player choose the smallest num-
bers in their assigned partition until their turns
end, although the resulting draw by this method
is likely not to be the result of optimal play.

5 Conclusion

One of the most interesting properties of Catch-
Up is the complexity of the game tree, given its
minimal game rules. This makes it challenging for
players to calculate optimal moves by backward
induction and adversarial search, necessitating
the use of heuristics to play the game. Catch-Up
rules not only can encourage drama and tension
in games, but they also have interesting math-
ematically emergent properties. We hope this
analysis provides game designers with alterna-
tive ways of thinking about using catch-up mech-
anisms in their own games.

In two-player or multiplayer games, the play-
ers’ current scores often provide a clue as to
how well they are doing in comparison to the
other players. One interesting aspect of Catch-
Up is that until the last few moves, the scores
do not provide this information because the lead
switches on every turn (except for ties). Thus,
players need to generate other methods of evalu-
ating the state of the game so that they can tell if
they are ahead or behind, but these are not obvi-
ous in a game like Catch-Up. Players accustomed
to treating current scores as an indication of who
is winning may find this to be an interesting fea-
ture, or an unpleasant surprise.

We believe that our work on Catch-Up offers
lessons that might help guide designers when
constructing their own games:



A. Isaksen et al. Catch-Up: A Game in Which the Lead Alternates 47

• The structure and form of the pieces can
greatly change how a game is perceived.
The accessibility of the physical version fa-
cilitates play because it does not require
the players to keep track of their scores.

• Catch-up mechanisms are intended to keep
players feeling that the game is close. In
combinatorial games, however, it can be
disguising the actual state of the game and
the likelihood of each player to win, lose,
or draw.

• The starting conditions for a game – the set
S in Catch-Up – can have a huge impact on
the solution space and play dynamics.

• Simple heuristics are easy to implement in
software and can help determine if new
players can successfully compete.

• Proving if a game has good characteristics
is often significantly more difficult than
simulating them; yet much can still be
learned from simulating game play.

We conclude by posing several open questions
for future study:

• What sets of numbers S are most enjoyable
for players?

• How do repeated or non-consecutive num-
bers in S change the game and the proper-
ties we have analysed?

• Is it possible to prove our conjecture that
optimal play always leads to a draw in
even-sum games of Catch-Up({1, ..., N})?

• What is the analytical bound for state-space
size? Is there a better upper bound for the
branching factor?

• Is multiplayer Catch-Up, where the player
with the lowest score goes next, a playable
game with interesting properties?

• Which heuristics are most effective across
different sets S in Catch-Up?

• What are the most interesting ways to
break ties? For example, one could break
a tie by comparing excess sums, calcu-
lated by summing the leads that players
achieved on their turns. By not allow-
ing ties, one can do a Nim-like analysis
of Catch-Up by treating it as an impar-
tial game, using the Sprague-Grundy theo-
rem [17].

• What happens if one of the players starts
with a non-zero score? One could start
P2 with a positive score, so P1 moves
first but starts from behind. This changes
the analysis of odd-sum games of Catch-
Up({1, ..., N}) such that they may end in
draws.
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Appendix

5.1 The Existence of Draws

For Catch-Up({1, ..., N}), we prove which games
will permit draws and which enforce a winner,
based on the value of N.

To begin, the final score of both players in
Catch-Up will always add to the sum of all the
numbers in S, because the game will only end
once all numbers are assigned to either P1 or P2.
From Equation 1, the total score T(N) for a game
with a set S = {1, ..., N} is N(N + 1)/2.

The key factor here is to determine if the sum
T(N) is even or odd. If T(N) is odd, such that
T(N) mod 2 = 1, then there is no way to parti-
tion S into two subsets S1 and S2 such that the
final scores are equal. If T(N) is even, such that
T(N) mod 2 = 0, then there is a way to assign the
numbers such that the players have equal scores
at the end.

If we write N = 4n + k, where n ≥ 0 and
k ∈ {1, 2, 3, 4}, we can determine, for all N, which
games will have even and odd sums:

T(4n + k) mod 2
= (4n + k)(4n + k + 1)/2 mod 2
= 8n2 + 4nk + 2n + k2/2 + k/2 mod 2
= k2+k

2 mod 2

Thus, parity is independent of n, and we can
show if it is odd or even for each k ∈ {1, 2, 3, 4}:

k = 1 : 12+1
2 mod 2 = 1 (odd)

k = 2 : 22+2
2 mod 2 = 1 (odd)

k = 3 : 32+3
2 mod 2 = 0 (even)

k = 4 : 42+4
2 mod 2 = 0 (even)

http://arxiv.org/abs/0909.2331v2
http://arxiv.org/abs/0909.2331v2
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Therefore, games of the form N = 4n + 1 and
4n + 2 will always have a winner by at least one
point, and games of the form N = 4n+ 3 or 4n+ 4
can, but are not required to, end in a draw.

5.2 Maximum Selections per Turn

We prove the claims of Section 4.7 to calculate
K, the maximum number of numbers that can be
selected on a turn. On the first turn, no matter
what set S is, P1 can only select one number. P2
can then choose from N − 1 numbers.

From Section 4.3, we know that the greatest
sum of numbers that can be earned on a turn is
2N − 2; before the last number is selected on the
turn, the sum of points earned can be no more
than N − 1. We want to find the maximum num-
ber of selections that sum to N − 1, and then add
1 for the final selection that ends the turn.

The maximum number of selections occurs
if the player selects {1, 2, ..., k} such that the sum
1 + 2 + ... + k is as large as possible while still
≤ N − 1:

1 + 2 + ... + k =
k(k + 1)

2
≤ N − 1

This is quadratic in k, so we can use the quadratic
formula with a = 1, b = 1, c = −2N + 2 to find
the positive k that maximises the sum. Adding 1
for the final number that takes the sum to ≥ N to
end the turn, we have the maximum number of
selections on a turn K = k + 1 as:

K = b
√

2N − 7/4 + 1/2c

which is O(
√

N) since K <
√

2N + 1/2.

5.3 Branching Factor (Derivation)

We find an upper bound for the maximum
branching factor Bmax for Catch-Up({1, ..., N}) as
follows:

On the first turn, P1 can only select one num-
ber, so the branching factor for turn 1 is N. In
general, when playing with any set S, the first-
turn branching factor is |S|.

For the remaining turns, we can calculate an
upper bound Bmax for the maximum branching
factor for Catch-Up({1, ..., N}) based on the re-
sults of Section 4.7. A player can select at least
one number and at most K numbers on a turn,
and those numbers can be permuted except for
the final one selected, so we have an upper bound
for the branching factor as:

Bmax <
K

∑
i=1

(
N − 1

i

)
(i− 1)! <

K

∑
i=1

(
N
i

)
i!

Because (N
i )i! =

N!i!
(N−i)!i! =

N!
(N−i)! < Ni and gen-

erally K < N/2 since K = O(
√

N), we have
(N

i ) ≤ (N
K) for i ≤ K, and therefore:

Bmax <
K

∑
i=1

Ni <
K

∑
i=1

NK < KNK

Thus, we have the final upper bound for the
maximum branching factor:

Bmax < (
√

2N + 1/2)N(
√

2N+1/2)

Bmax = O
(

N
√

2N+1
)

Try Challenges #7 and #8
Fill the grid with numbers 1 to 7, such that no number is repeated along any orthogonal line, and no
connected group of odd numbers touches all three sides. See p. 21 for details.

6 7 1 2

3 5

1 6

2 4

5 2

4 3

2 5

6 1

2

5

2


